C3 – Quantitative Chemistry

C3 – Quantitative Chemistry

 Concentrations of Solutions Concentration =mass of dissolved substance in specific volume (eg dm³) 		 Moles and Equations (HT only) You can use moles to help you write balanced symbol equations. Example Question 18.4g of Sodium reacted with 6.4g of oxygen to give 24.8g sodium oxide. Use the masses to write the balanced equation. 		Calculating reacting masses (HT) Example Question Calculate the mass of calcium needed to make 11.2g Calcium oxide	
 iviore substance dissolved = more concentrated solution 				Step	Calculation $2Ca + O_{2} \rightarrow 2CaO_{2}$
(g/dm^3) (g) (dm ³)		Step	Example	equation	
Can be rearranged to find mass dissolved:		Write the equation	$Na + O_2 \rightarrow Na_2O$	Write the masses of each substance	$80 + 32 \rightarrow 112$
mass = concentration x volume (g) (g/dm ³) (dm ³) 10(Ci div	1000cm ³ = 1dm ³	for the reaction (unbalanced)		Write down the given mass in the question.	11.2
	divide by 1000.	write down the mass or % <u>given in the</u> <u>question</u>	18.4 + 6.4 → 24.8	Work out the 'scale' factor (ie what did	÷ 10
Calculating mass in a given volume If you have a known volume of a solution of known concentration then you can calculate the mass of dissolved solid.		Write the mass of one mole of each element or compound	23 32 62 (e.g 18.4 ÷ 23)	original number to get to the desired mass	•
E.g Calculate the mass of dissolved solid in 25cm ³ of a 96g/dm ³ solution How do we		Divide the mass given in question by the mass of one	0.8 0.2 0.4	Do the same to the other side	8g
Do the same to the other side (÷40)	get from c m ³ 1000 to 25? (÷40)	Turn the answers into whole number simple ratio	8 2 4 (cancel down) 4 1 2	 Limiting Reactants (HT only) If one reactant runs out before the other, then the reaction will stop. The reactant that runs out first in a reaction is known as the limiting reactant. 	
2.4g		Put the numbers into the equation	$4Na + O_2 \rightarrow 2Na_2O$		